Attenuation of argininosuccinate lyase inhibits cancer growth via cyclin A2 and nitric oxide.

نویسندگان

  • Hau-Lun Huang
  • Hui-Ping Hsu
  • Shu-Chu Shieh
  • Yung-Sheng Chang
  • Wei-Ching Chen
  • Chien-Yu Cho
  • Chiao-Fang Teng
  • Ih-Jen Su
  • Wen-Chun Hung
  • Ming-Derg Lai
چکیده

Arginine biosynthesis and nitric oxide (NO) production are important for cancer homeostasis. Degradation of arginine may be used to inhibit liver tumors with low argininosuccinate synthetase (ASS) expression. In this report, we investigated an alternative therapeutic approach by targeting argininosuccinate lyase (ASL). ASL is transcriptionally induced by endoplasmic reticulum stress and is overexpressed in some human liver tumors. Knockdown of ASL expression by short hairpin RNA (shRNA) in three liver cancer cell lines, ML-1, HuH-7, and HepG2, decreased colony formation in vitro and tumor growth in vivo. Furthermore, lentiviral infection of ASL shRNA inhibited tumor growth in a therapeutic animal tumor model. Analysis of ASL shRNA on the cell-cycle progression revealed a G2-M delay. Among cell-cycle regulatory molecules, cyclin A2 expression was reduced. Reintroduction of exogenous cyclin A2 restored the cell growth in ASL-knockdown cells. Autophagy was observed in the cells treated with ASL shRNA, as shown by an increase in LC3-II levels and autophagosome formation. The total cellular arginine level was not altered significantly. Inhibition of autophagy further attenuated cell growth, suggesting that autophagy induced by ASL shRNA plays a feedback prosurvival function. Knockdown of ASL reduced NO content, and addition of NO donor partially recovered the growth inhibition by ASL shRNA. In summary, downregulation of ASL attenuated tumor growth and the inhibition was mainly mediated by a decrease of cyclin A2 and NO.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Argininosuccinate lyase interacts with cyclin A2 in cytoplasm and modulates growth of liver tumor cells

Arginine is a critical amino acid in specific cancer types including hepatocellular carcinoma (HCC) and melanoma. Novel molecular mechanisms and therapeutic targets in arginine metabolism-mediated cancer formation await further identification. Our laboratory has previously demonstrated that arginine metabolic enzyme argininosuccinate lyase (ASL) promoted HCC formation in part via maintenance of...

متن کامل

Argininosuccinate lyase is a potential therapeutic target in breast cancer.

Arginine is a non-essential amino acid that modulates nitric oxide production and cancer homeostasis. In our previous study, we observed that blocking argininosuccinate lyase (ASL) attenuates tumor progression in liver cancer. However, the role of ASL in human breast cancer has been studied to a lesser degree. In the present study, we investigated the effect of targeting ASL in breast cancer. W...

متن کامل

Nitric Oxide (no), Citrulline - No Cycle Enzymes, Glutamine Synthetase and Oxidative Stress in Anoxia (hypobaric Hypoxia) and Reperfusion in Rat Brain

Nitric oxide is postulated to be involved in the pathophysiology of neurological disorders due to hypoxia/ anoxia in brain due to increased release of glutamate and activation of N-methyl-D-aspartate receptors. Reactive oxygen species have been implicated in pathophysiology of many neurological disorders and in brain function. To understand their role in anoxia (hypobaric hypoxia) and reperfusi...

متن کامل

Immunohistochemical Analysis of Citrulline-Nitric Oxide Cycle Enzymes and Glutamine Synthetase in Different Regions of Brain in Epilepsy Rat Model

The aim of this study was to determine the immunoreactivity of neuronal and inducible nitric oxide synthetase, argininosuccinate synthetase, argininosuccinate lyase, glutamine synthetase in different regions of brain in rats of kainic acid mediated epilepsy. Male Sprague-Dawley rats were used in this study. The acute group animals were sacrificed after 2 hours and the chronic group animals were...

متن کامل

Hyperammonemia: regulation of argininosuccinate synthetase and argininosuccinate lyase genes in aggregating cell cultures of fetal rat brain.

Hyperammonemia in the brain leads to poorly understood alterations of nitric oxide (NO) synthesis. Arginine, the substrate of nitric oxide synthases, might be recycled from the citrulline produced with NO by argininosuccinate synthetase (AS) and argininosuccinate lyase (AL). The regulation of AS and AL genes during hyperammonemia is unknown in the brain. We used brain cell aggregates cultured f...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Molecular cancer therapeutics

دوره 12 11  شماره 

صفحات  -

تاریخ انتشار 2013